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Bending Analysis of Mindlin-Reissner Plates by the Element Free 
Galerkin Method with Penalty Technique 

Yoo Jin Choi, Seung Jo Kim* 
Department o f  Aerospace Engineering, Seoul National University, Seoul 151- 742, Korea 

In this work, a new penalty formulation is proposed for the analysis of Mindlin-Reissner 

plates by using the element-free Galerkin method. A penalized weak form for the Mindl in-  

Reissner Plates is constructed through the exterior penalty method to enforce the essential 

boundary conditions of rotations as well as transverse displacements. In the numerical examples, 

some typical problems of Mindlin-Reissner plates are analyzed, and parametric studies on the 

order of integration and the size of  influence domain are also carried out. The effect of the types 

of background ceils on the accuracy of numerical solutions is observed and a proper type of 

background cell for obtaining optimal accuracy is suggested. Further, optimal order of integra- 

tion and basis order of Moving Least Squares approximation are suggested to efficiently handle 

the irregularly distributed nodes through the triangular type of background ceils. From the 

numerical tests, it is identified that unlike the finite element method, the proposed element-free 

Galerkin method with penalty technique gives highly accurate solution without shear locking in 

dealing with Mindlin-Reissner plates. 
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1. Introduction 

Although the finite element method has served 

as an industrial standard for solving various 

kinds of mechanics problems for several decades, 

the finite element methods have been plagued by 

its inherent problems such as shear locking, hu- 

man- labor  intensive meshing, severe mesh distor- 

tions, etc. Therefore, considerable research efforts 

have been expended on a meshfree paradigm to 

get rid of the inherent problems mentioned abore, 

and as a result various meshfree methods have 

been extensively developed. Some of these are 

diffuse element method ( D E M :  Natroles et al., 

1992), element-free Galerkin method ( E F G M :  

Belytschko et al., 1994; Belytschko et al., 1996), 

reproducing kernel particle method (RKPM : Liu 
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et al., 1995; Li and Liu, 1999), finite point me- 

thod(Onate et al., 1996), partit ion of  unity meth- 

od (PUM : and Melenk, 1997), hp-clouds meth- 

od (Duarte and Oden, 1996 ; Garcia et al., 2000), 

meshless local Petrov-Galerkin method (MLPG : 

Atruli and Z h u ,  1998 ; Atruli et al., 1999 ; Atruli 

and Zhu , 2000), freemesh method (Yagawa and 

Furukawa, 2000) and others. Meshfree methods 

have been successfully applied to various engineer- 

ing problems. Related to Mindlin-Reissner plates, 

Donning and Liu (1998) adopted cardinal spline 

functions instead of  widely used Moving Least 

Squares interpolation functions. Garcia et al. 

(2000) analyzed thick plates by hp-clouds meth- 

od. Cho and Atluri (2001) proposed MLPG me- 

thod based on locking-free formulation and dealt 

with shear flexible beams. However, the problem 

of Mindlin-Reissner plates has not yet been suffi- 

ciently dealt with by the meshfree methods such as 
element-free Galerkin method which is one of the 

most widely used meshfree methods although the 
Kirchhoff thin plate was dealt with by element- 

free Galerkin method in the previous work (Krysl 
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and Belytschko, 1996). For  this reason, the Mind- 

l in-Reissner plates are analyzed in the present 

work by applying the element-free Galerkin me- 

thod. 

In the present work, a penalized weak form of  

Mindlin-Reissner  plates for the element-free 

Galerkin method is introduced by using the 

exterior penalty method in order to enforce the 

essential boundary conditions of rotations and 

displacements. The penalty technique (Zhu and 

Atluri,  1998) does not introduce addit ional un- 

known variables of  Lagrange multipliers or cum- 

bersome partial direct transformations (Chen et 

al., 1997). The numerical examples show that the 

essential boundary conditions of rotations as well 

as displacements are effectively enforced through 

the proposed penalty formulation without much 

difficultys. Typical problems of  Mindlin-Reissner 

plates are dealt with in numerical examples, and 

the numerical solutions are compared with an- 

alytical solutions. Parametric studies concerning 

the order of integration and the size of influence 

domain are carried out, and the dependence of the 

solutions accuracy on the types of  background 

cells are observed. Based on the investigations, an 

appropriate type of background cell for obtaining 

optimal accuracy is suggested. Moreover, since 

the construction of background integration cell 

with no regard to the local support of shape 

function (the influence domain) may result in 

considerable integration error, special attention 

should be given to the construction of the inte- 

gration cell in dealing with irregularly distributed 

nodes (Dolbow and Belytschko, 1999; Park and 

Youn, 2001; Song et al., 2001). Therefore a 

triangular type background cell is also considered 

to effectively handle the irregularly distributed 

nodes (Choi and Kim, 1999 ; Choi et al., 2000). 

And optimal order of integration and the basis 

order of  Moving Least Squares approximation, 

which are appropriate for the triangular type 

background cells, are suggested. From the nu- 

merical tests, it is identified that the proposed 

element-free Galerkin method with penalty tech- 

nique gives highly accurate solution without 

shear locking in dealing with Mindlin-Reissner 

plates in contract to the finite element method. 

2. Element Free Galerkin Method 

with Penalty ( E F G M P )  

2.1 Moving least squares (MLS) approxi- 
mation 

Suppose that the values of  a continuous func- 

tion u : fl ~ R, Q ~ R n ( n = l ,  2 or 3) are given 

as / ) l=U(Xl )  at the scattered points x ~  f2 ( I =  

I, ..., N)  and the function u in Q is to be 

approximated. To approximate the distribution of 

the function u in f~, the global approximation 

form uh(x)  is defined as follows. 

m 

u(x )  ~ uh(x)  =Z;=I p , (x)  a , (x )  = o r  ( x ) a ( x ) ,  (1) 

for all x E  f~ 

where l a ( X ) = { P l ( x ) ,  /~(x) ,  " ' ,  pro(x)} r is a 

polynomial MLS basis. The vector a ( x ) = {  a,  

(x) ,  az(x) ,  --., am(x)} r is a vector of undeter- 

mined coefficients, whose values can vary accord- 

ing to the position. The coefficient vector a ( x )  at 

each position x = x  will be determined by a local 

weighted least square approximation uz of the 

function u ( x ) ,  in a sufficiently small neighbor- 

hood of  x = x .  A local weighted least squares 

approximation u ,  for each point ~ Q is given 

in the following. 

u , ( x )  = ~  p , (x)a , (Yd = l a r  ( x ) a ( i )  (2) 
i = 1  

The coefficient vector a ( ' x ) = { a l ( . x ) ,  "", am 

(~)}r is an m × l  vector that minimizes the fol- 

lowing weighted discrete L2 error norm so that 

the local approximation is the best approximation 

to u in the weighted least square sense. 

J~(a)  = w~(Y~) E l - -  Pi(Xl)~i 
~=~ "= (3) 

for a = {  al, -'-, am }r 

In other words, the coefficient a ( x )  are found by 

solving the following problem:  

Find a (~ )  - - a * E R  m 

such that ]~(a*)  ~ ] a ( a )  (4) 
for  all a E  R m 

It is noted that Jx(a)  is dependent on the posi- 

tion '~. Finally the coefficient vector a* can be 

obtained by the following normalized equation. 
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m N 

k=u=l (5) 
N 

=Y] /Sj(xl)wl(x)f i t ,  j = l ,  "", m 
1=1 

Eq. (5) can be rewritten in a simplified matrix 

form as 

A (.~) a (.~) = B  (.~) fi (6) 

where 

A(.~) = p r w ( ' ~ )  P i7) 

B(x) = P r W / x i  I8) 

In Eqs. ',7, and (8), matrix P is :t.V × m matrix. 

and W(x) is a N><N diagonal matrix written as 

follows 

P = [ p ( x ~ ) .  p(x2) ,  "', p (xN) ]  r (9) 

w,(~) 0 -.. i ] 
W(~:) = o w~(~) : (10) 

: 

0 ... 0 w~ (x) 

Solving Eq. (6), one can obtain the coefficient 

vector a('x) as follows. 

a(x )  = A - '  (k) B(2 )  u ( l I) 

Using the coefficient vector obtained from the 

local approximation procedure, the global ap- 

proximation o f u  given in Eq. (1) can be rew- 

ritten as 

m N 

Z t ( X ) = ~ , D s ( X ) a j ( X ) = ~ , I ~ I ( X ) ~ ,  (12) 
j = l  I = 1  

where 

=2 
We call that the functions gb(x) are the MLS 

shape functions of the approximation. It is noted 

that z~t ( I =  1, -", N) are not the nodal values of 

the approximation function uh(x) but are the 

given fictitious values of variable u at nodes I. In 

Eq. (3), wt (x) is the weight function associated 

with the position xz of node I ,  Wz (x) is greater 

than 0 for all x in the support domain of wt (x), 

and N denotes the number of nodes. 

The weight function is constructed so that it is 

positive and the existence of the unique solution 

a(x)  is guaranteed. The value of wl(x) is large 

lbr points close to the nodal point xi, and small 

or zero for points far from the nodal point xt. In 

this study, because only the C o continuity is re- 

quired in analyzing the Mindlin-Reissner Plates, 

the C O Gaussian type exponential weight function 

is utilized, and kt is taken as 1. 

[ ex m 
trt:x) = I l-exp(-Irl/'c~ !2% , &<-h (14) 

10 , & > - r z  

where di=]t x - x t  11 is the distance between posi- 

tion x and the position of the nodal point xt. 

The ,"t is the radius of inlluence domain, and the 

control parameter ci is selected as r f f4 .  It is 

noted that the present weight functions are differ- 

entiable except on the boundary of their supports. 

2.2 A penalized weak formulation 
In the Mindlin-Reissner plate theory (Timo- 

shenko and Krieger, 1959), the deformation is 

completely described in terms of the transverse 

displacement of a middle surface and rotations of 

the normal to the undeformed middle surface in 

x-z and y-z planes. The displacements u, v. and 

w in x-,  y- ,  z-directions assume the following 

forms. 

u=-Oxz, v=-Oyz, w=w(x, y)=wo (15) 
where w0 is the transverse displacement of the 

middle surface, Ox and Or are rotations of the 

normal to the undeformed middle surface in x-z 

and y-z planes, respectively. By using Eq. (15), 

the strain field can be also written in terms of the 

kinematic variables w, Ox, and Oy as follows. 

o exx] ~- 0 

0 0x}. 
~b= e .  ~ = - z  o ~ {0, 

7~ J O O ~x It6) 
Ow 

-ox+ ox- 
~ s = {  r ~ } =  Ow r,, -0,+~y 

where subscripts b and s denote the bending and 

shear terms, respectively. Further, one can obtain 
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the stress-strain relationships for the isotropic 

materials under the plane stress assumption. 

6b= ~r~ = E v l  

a~ 7yz 

--=Ebcb, 

(17) 

By using the relations given be Eqs. (16) and 

(17), the total potential energy of  the Mindlin-  

Reissner Plate is written as follows. 

II = ~ f  rbDrbd f2 1 r 

- L u r q d  ~ - f ur tdF 
(18) 

where D=haEa/12, a=tE ,~ ,  u r = {  G,  Oy, w }, 

q r : { 0 ,  0, q}, and t : = { M ~ ,  3~r~, Q) .  Hene, 

q denotes the distributed transverse three per 

unit area, and (~ denotes the prescribed shear 

force per unit length along the mechanical boun- 

dary. ll~x and /l~y are the prescribed bending 

moments per unit length along the mechanical 

boundary. 

As aforementioned, since the penalty technique 

does not require an additional unknown and 

preserves favorable matrix structures, the penalty 

technique is utilized to enforce essential boundary 

conditions of rotations as well as displacements 

in this work. For  the purpose, the penalized 

energy is added to the total potential energy of  

Mindlin-Reissner plates. 

- f au "a a - fdu  ar (20) 

+ ± [  au~(u-a) dF 
Cp J Fu 

= 0  

The unknown vectors u and its variation ~u in 

the proposed weak form are approximated by the 

moving least square interpolants u h = ~ f i  and 

a u h = ~ 3 f i ,  respectively. Through the moving 

least square method, the strain vector Cb and Cs 

can be also approximated as eh=Bbf i  and cs h =  

Bsfi, respectively. Substituting the interpolants 

into the penalized weak form, Eq. (20) reduces to 

3 f i r ( K + K p )  f i : ~ f i r ( f + f p ) ,  for all 3fi (21) 

Finally we can obtain the following system of 

linear algebraic equations, Eq. (22), since Eq. 

(21) holds for all c~fl. 

(K+Kp) f i :  ( f+fp)  (22) 

where K is the stiffness matrix, Kp is the matrix 

related to penalty, f is the load vector, and fp is 

the vector concerning the penalty. The matrices 

and vectors assume the forms of 

K= fB Oma + a (23a) 
Q 

F. 

f :  f @rqd f2 + f @rtdF (23c) 

f p = ~ / ~ r f l d E  (23d) 
G 

1 r + ~ f q r s  a~sd Q lip =~fQrbD~bd Q 1 r 

- f urqd Q-  fruT'dF 

+2 pfr(u-a) T(u-u) ar  

(19) 

where ep is the penalty parameter, and u r = {  0-x, 

0-y, ~b } denotes the prescribed values of the 
kinematic variables on the essential boundary. By 

applying the stationary condition of the penalized 

total potential energy, the penalized weak form of  
Mindlin-Reissner plate assumes the form of 

2.3 Background cell for numerical integra- 
tion 

To integrate the weak form, most of the mesh- 

free methods including the element-free Galerkin 

method construct the background integration 
cells which are independent of the nodes. The 

background integration cells have the following 

features as discussed in Belytschko et al. (1996): 

The background cells do not need to be com- 

patible with nodes and may be arranged in a re- 

gular pattern. The cells serve not only to provide 
a data structure for the numerical integration but 
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(a) U4NB 

(c) NU REC 

Fig. 1 

) 0  0 
r - x  

) 0  ) 0 ( ) 0  

) 0  O ( ) O  

(b) U9NB 

(d) NU TR1 

Types of background cells. (a) 4-node type 
background cell for uniform node distributi- 

on. (b) 9-node type background cell for uni- 
form node distribution. (c) Rectangular type 
background cell for non-uniform node dis- 
tribution. (d) Triangular type background 
cell for non-uniform node distribution 

also to facilitate the identification of nodes. The 

types of background cells that are used in mesh- 

free methods are the cell quadrature type or ele- 

ment quadrature type. In this study, we will con- 

sider the four types of background cells as shown 

in Fig. 1, and investigate the effect of the type of 

background cell on the solution accuracy. 

3. Numerical Experiments 

The proposed method is tested by benchmar- 

king examples such as problems of square plates 

under uniform transverse loads. To compare the 

solutions obtained by the present element-free 

Galerkin method with the ones obtained by the 

finite element methods, the same number of de- 

grees of freedom was adopted in both methods. 

A Poisson's ratio of 0.3 and Young's modulus 
of 300 GNm -z were used throughout the tests. 

And the analytical solution of the classical thin 

plate theory (Timoshenko and Krieger, 1959) is 

utilized in assessing the accuracy of each method. 

vix 
I 

Fig. 2 Clamped square plate subjected to uniform 
transverse loading 
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Fig. 3 
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Convergence for different penalty para- 
meters for clamped square plate 

3.1 Test for enforcing the essential boun- 
dary condition 

Since the MLS shape functions for the nodal 

points inside the domain may not vanish on the 

boundary of the domain, it is difficult to handle 

the essential boundary condition in meshfree me- 

thods. In this section, we analyzed a homogen- 

eous clamped square plate under uniform trans- 

verse loading, and investigated whether the essen- 

tial boundary conditions is successfully enforced 

through the proposed penalty formulation. 

A square plate, which is clamped along the four 

edges subjected to uniform transverse loading as 

shown in Fig. 2, is analyzed. The thickness t of 

the plate is 0.01 m, and the edge length L is 1 m. 
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The model has 17 × 17(=289) uniform node dis- 

tribution, and the type of background cells uti- 

lized in the analysis is the same type as shown in 

Fig. l (b ) .  

The convergence of the displacement and 

moment at the center point of the plate for differ- 

ent reduces of  penalty parameter is presented in 

Fig. 3. The numerical results show slight devia- 

tions from the analytical solutions since the an- 

alytical solutions of classical thin plate theory 
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Fig. 4 
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Enforcement of clamped boundary conditions 
for different nenahv numbers 

are used for comparism. However, the result clear- 

ly shows that both the displacement and moment 

at the center of  the plate converge as the penalty 

number is decreased. In Fig. 4, the solutions at the 

essential boundaries for different penalty parame- 

ters are presented. The results identify that the 

proposed method enforces not only the prescribed 

displacements but also the prescribed rotations 

successfully. 

3 .2  P a r a m e t e r i e  s t u d y  

In this section, the parameter studies were car- 

ried out with particular focus on the relation 

between the type of the background cells and the 

number of  integration points per cell (i.e. order of  

Gaussian quadrature),  and also between the total 

number of  nodes and the order of Gaussian 

quadrature. First, a thin square plate with thick- 

ness-to-length ratio of 0.01 is analyzed and the 

obtained results are presented in Figs. 5 and 6. 

For  meshfree discretization, 17 X 17 (=289)  regu- 

larly distributed nodes are used, and 4 times the 

nodal distance is adopted as a radius of  support 

of MLS shape function. In Fig. 5, the effect of the 

number of  integration points per cell (i.e. order of  

Gaussian quadrature) on the numerical solution 

is presented for several combinations of the back- 

ground cells and MLS basis order. It is clearly 

1.04 

~ t 1.00 

0.96 

0.92 

0.88 

0.84 

Fig.  5 

0 10 20 30 40 50 
Number of integration points per cell 

Effect of MLS basis and background cell on 
the numerical solutions according to integra- 
tion orders 
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shown form the results that the quadratic MLS 

basis gives much more accurate solution than the 

one obtained by the linear MLS basis regardless 

of the order of the Gaussian quadrature (the 

number of integration points per cell). The results 

also show that the accuracy of all of the com- 

binations tend to deteriorate the order of the 

Gaussian quadrature is increased. Further, one 

can observe that the combination of the quadratic 

MLS basis and the U9NB type background cell 

with 3X3 Gaussian quadrature rule (9 integra- 

tion points) gives the best solution among all the 

combinations considered in the example. In Fig. 

6, numerical solutions according to the order of 

the Gaussian quadrature (number of integration 

points per cell) are presented for three cases in 

which the total number of nodes are different 

fiom each other. To calculate lhe results presented 

in Fig. 6, the quadratic MLS basis and the U9NB 

type of background cells are adopted. The results 

show clearly that regardless of the order of the 

Gaussian quadrature, the solution becomes stable 

and the accuray is improved as the total number 

of nodes is increased. From the results, it is found 

that the quadratic MLS basis and the U9NB 

type background cell with 3 x 3 Gaussian quadra- 

ture rule (9 integration points) are the optimal 

combination for analyzing the Mindlin-Reissner 

1 . 2 0 -  . . . . .  i . . [  i 

" °  L :d I J 
1.05 - 

1.00 

0.95 ! 

0.90 

0.85 

0.80 

Fig. 6 

0.75 , r 
10 20 30 40 50 

Number o f  i n t e g r a t i o n  points per cell 

Effect of total number of nodes on the nu- 
merical solutions according to integration 
orders 

plates in case of uniform node distribution. 

Aforementioned in the section of introduction, 

because the construction of background integra- 

tion cell with no regard to local support of shape 

function may result in considerable integration 

error (Atluri et al., 1999 ; Dolbow and Belytschko, 

1999), special attention should be given to con- 

structing the integration cells in dealing with 

irregularly distributed nodes. Therefore the type 

of background cell shown in Fig. l(c) may in- 

duce considerable integration error. For this rea- 

son, a triangular type background cell is consi- 

dered instead of a rectangular type in order to 

effectively handle the irregularly distributed no- 

des. In a previous work (Choi and Kim, 1999; 

Choi et al., 2000), it was shown that the triangu- 

lar type background cell gives more reliable solu- 

tion for the problems with irregularly distributed 

nodes compared with the one obtained by the 

rectangular type background cell. In calculating 

the results presented in Figs. 7(a) and 7(b), the 

Iriangular type background cell is adopted to 

analyze the model with irregularly distributed 

nodes. In Figs. 7(a) and 7(b),  numerical solu- 

tions of transverse deflection and moment for 

different sizes of influence domain are presented 

for various combinations of order of quadrature 

and order of the MLS basis, respectively. The 

results show that both the transverse deflection 

and momemt are guite insensitive to the size of 

influence domain (radius of support of the MLS 

shape function) if we use the 3 points integration 

rule with the quadratic MLS basis. From the 

results, it is found that the combination of 3 

points integration rule and the quadratic MLS 

basis guarantees highly accurate and stable mo- 

ments as well as transverse deflections, and that 

the combination of 3 points integration rule and 

the quadratic MLS basis is highly satisfactory for 

dealing with irregularly distributed nodes. This 

combination with the triangular type background 

integration cell is recommended for the analysis 

of Mindlin-Reissener plates with irregularly dis- 

tributed nodes. 

3.3 Test for shear locking 
In the theory of Mindlin-Reissner plates, the 
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Effect of integration order and the MLS 
basis on the transverse deflection for dif- 
ferent sizes of influence domain : Trian- 
gular type background cell is used 

rig. 7 (a) 

rotations are independent of the transverse dis- 

placements, and the transverse shear effects di- 

minish gradually as the plate thickness is de- 

creased. However, if a finite element technique 

is involved in analyzing thin plates through the 

theory of Mindlin-Reissner plates, the constraint 

of almost zero shear strain energy locks the 

bending motion of the plates and produces wild 

oscillations in shear stress. This phenomenon is 

known as "shear locking". Therefore many res- 

earchers have concentrated their studies on trying 

to avoid shear locking through various appro- 

aches such as reduced/selective integration, or de- 

veloping assumed strain elements, among others 

(H. C. Huang, 1989). Among them, reduced and 

selective integration schemes are widely used 

since these integration schemes are simple and 

efficient. However, they are not universal (H. C. 

Huang, 1989). Some troubles still remain with 

reduced/selective integration schemes, and reduc- 

1 .20  

Fig. 7 (b) 

0.90 0._-0..---0 ' - ~  ' ~  ~ 

°'° t 
0 . 7 0  - 

3 . 0  3 .2  3 . 4  3 .6  3 .8  4 .0  

Size of influence domain 

Effect of integration order and MLS basis 
on the bending moment for differant sizes 
of influence domain: Triangular type 
background cell is used 

ed integration induces the spurious kinematic 

modes which are rather difficult to control. 

In this section, two examples involving a 4- 

edge clamped square plate and a cantilevered 

plate are analyzed by the proposed EFGMP 

method in order to investigate whether the shear 

locking phenomen on vanishes with the proposed 

EFGMP (Element Free Galerkin Mehtod with 

Penalty technique). 

3.3.1 A cant i levered plate under end load 

A cantilevered plate under end load is analyzed 

by the proposed method, and the results are 

compared with the results obtained by the finite 

element method. The geometry of the cantilevered 

plate, node distribution, and the type of the 

background cell (U9NB) are presented in Fig. 8. 

The length-to-width ratio is 8. Fig. 9 (a) presents 

the results obtained by three numerical methods : 

4-node finite element with full integration, 4- 
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node finite element with reduced integration, and 
EFGMP with linear basis and 3 × 3  Gaussian 
quadrature rule (9 integration points per cell). 
The comparison shows that reasonable results can 
be obtained without special treatment in the 
EFGMP case, while the finite element requires 
special treatment such as reduced integration in 
order to obtain a reasonable solution in the thin 
plate region (L/t> >1). 

In Fig. 9(b), the result obtained by EFGMP is 
compared with the results obtained by the 9-node 
finite element. In EFGMP, a quadratic basis and 
3 × 3 Gaussian quadrature rule are adopted. Both 
of the results presented in Figs. 9(a) and 9(b) 
clearly identify that EFGMP gives very good 

Fig. 8 Cantilevered plates under tip load, nodal 
distribution and type of background cell 
(U9NB) 

solution and does not invokes shear locking in 
the thin plate region where the length-to-thick- 
ness ratio is guite large (even in the region of L /  
t = 10,000). 

3.3.2 The clamped square plate under uni- 
form lateral load 

The clamped square plate subjected to uniform 
transverse loading is considered in this example. 
To analyze the problem by the proposed EFGMP, 
the U9NB type of background cell in Fig. l(b) 
is adopted, and in each background cell, 3 ×3 
Gaussian quadrature rule (9 integration points) 
is utilized to integrate the weak form. To model 
the clamped plate, uniformly distributed 81 (9× 
9) nodes are used. In the case of  the finite ele- 
ment, the plate is modeled by 8 × 8 meshes. 

In Figs. 10(a), 10(b), and 10(c), the linear 
basis, quadratic basis, and cubic basis are adopt- 
ed for MLS approximation, respectively. To com- 
pare the results obtained by the proposed EFGMP 
method with the solutions obtained by the finite 
elements, 4-node, 9-node, and 16-node elements 
are utilized in Figs. 10(a), 10(b), and 10(c), 

respectively. The total numbers of finite element 
nodes in Fig. 10(a), 10(b), and 10(c) are 81 
( = 9 × 9 ) ,  2 8 9 ( = 1 7 ×  17) and 625(- -25×25) ,  re- 
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spectively. 

In Fig. 10(a), one can observe that the pro- 

posed EFGMP method with the linear basis does 

not invoke a typical shear locking, although the 

typical shear locking occurs in low order finite 

elements with full integration. In the higher order 

case, we can see in Figs. 10(b) and 10(c) that a 

non-typical locking is not induced in the 

EFGMP with the quadratic or cubic basis, while 

the higher order element with full integration 

induces a non-typical locking• 

From the results presented in Figs. 10(a) ~ (c), 

we can confirm that the proposed EFGMP shows 

much better performance in avoiding shear lock- 

ing and maintaining the solution accuracy in the 

thin plate region compared with the finite element 

methods. 

3.4 Convergence test 
In this section convergence studies are carried 

out for simply supported and clamped thin plates 

subjected to uniform transverse loads, and the 

results are compared with those obtained by the 

finite element methods that use the same number 

of nodes. 

3.4.1 A simply supported square plate under 
uniform load 

A simply supported square plate under uni- 

formly distributed transverse load was analyzed 

by the proposed EFGMP. The U9BC type back- 

ground cell in Fig. l(b) is adopted, and 3× 3  

quadrature rule (9 points integration) is utilized. 

The length-to-thickness ratio L/t  of the plate is 

100. Using the same number of nodes, the square 

plate was also analyzed by the QUAD9 element 

and QUAD9* element (QUAD9 and QUAD9* 



74 Yoo Jin Choi and Seung Jo Kim 

Table 1 Convergence of EFGMP : simply-supported square plate under uniformly distributed transverse load 

Total number of 
nodes 

(U9NB type of 
background cell) 

Deflection at center 

EFGMP 

(W/W_analytic) 

QUAD9 

Bending Moment at center 

QUAD9* 

(M/M_analytic) 

QUAD9 EFGMP QUAD9* 

1.0450 1.2386 

1.0209 1.0300 

1.0073 1.0109 

1.0028 1.0055 

25 (5 X 5) 1.0145 1.0381 1.0392 1.2387 

81 (9 X9) 1.0059 1.0088 1.0089 1.0300 

169 (13 X 13) 1.0056 1.0076 1.0076 1.0109 

289 (17 X 17) 1.0053 1.0074 1.0074 1.0108 

Table 2 Convergence of EFGMP :clamped square plate under uniformly distributed transverse load 

Deflection at center Total number of 
nodes 

(U9NB type of 
background cell) 

Bending Moment at center 
(W/W_analytic) (M/M_analytic) 

EFGMP QUAD9* QUAD9 QUAD9 

25 (5 X5) 1.0638 2.0791 2.0783 1.2247 

81 (9X9) 

169 (13×13) 

1.0418 

1.0130 

1.0068 

1.0974 

1.0299 

1.0114 

1.0967 

1.0293 

1.0110 

EFGMP QU AD9* 

1.0418 1.2246 

1.0378 1.0147 

1.0032 1.0077 

1.0010 1.0066 289 (17x17) 

1.0148 

1.0077 

1.0067 

are the 9-node element with reduced integration 

and the assumed strain element, respectively.), 

and the results were compared with the solutions 

obtained by the proposed EFGMP (element-free 

Galerkin method with penalty technique). Both 

of the results are presented in Table 1. From the 

results in Table 1, one can observe that both the 

deflection and the bending moment at the center 

of the plate obtained by EFGMP are closer to 

the analytic solutions of the thin plate theory 

(Timoshenko and Krieger, 1959) than those ob- 

tained by the finite element methods. 

3.4.2 A clamped square plate under uniform 

loads 
The uniformly loaded clamped square plate 

with L / t=100  was analyzed by using the pro- 

posed EFGMP. To evaluate the weak form, the 

U9BC type background cell and 3X3 quadra- 

ture rule (9 points integration) are adopted. The 

results are compared with the solutions obtained 

by the finite element model with the same number 

of nodes. The results are presented in Table 2. 

Similar to the case of a simply-supported plate, 

the proposed EFGMP shows much improved 

performance compared with the finite element 

method. 

4. Conclusions  

In this paper, a new penalty formulation for the 

analysis of Mindlin-Reissner plates by the ele- 

ment-free Galerkin method was presented. The 

penalty formulation enforces the essential boun- 

dary conditions on rotations and displacements, 

where additional unknown variables of the La- 

grange multipliers or tedious partial direct trans- 

formations can be avoided. 

Numerical tests prove that through the pro- 

posed penalty formulation the essential boundary 

conditions on rotations and transverse displace- 

ments are efficiently enforced without the loss of 

desirable matrix properties such as the positive 

definiteness and banded structure. Some typical 

problems of Mindlin-Reissner plates are analy- 

zed, and parametric studies an the order of inte- 

gration and size of the influence domain are 

performed. Also, the numerical solutions accord- 

ing to the MLS basis order and the types of the 

background integration cells are investigated. 
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Based on the numerical results observations, the 

quadratic MLS basis and 3 ×3 quadrature rule 

(9 points integration) with the U9NB type back- 

ground cell in Fig. 1 (b) privide adeguate numer- 

ical solutions in the case of  uniformly distributed 

nodes. Further, to handle the irregularly distri- 

buted nodes, the triangular type background cell 

in Fig. I(d) is introduced, and it is found that 

accurate and stable solutions are guaranteed by 

the quadratic MLS basis and three points inte- 

gration. 

The numerical tests concerning the shear lock- 

ing testify that thc elcment-frce Galerkin method 

with penalty technique gives highly accurate so- 

lution and avoids shear locking when applied to 

Mindlin Reissner plates unlike the finite element 

methods. The present element-free Galerkin me- 

thod with penalty technique has significant advan- 

tages over the finite elements in the analysis of 

Mindlin-Reissner plates. 
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